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Algebraic properties of regular expressions: 


Kleene closure is an unary operator and Union(+) and concatenation operator(.) are binary operators.



1. Closure:



If r1 and r2 are regular expressions(RE), then 



r1*  is a RE

r1+r2 is a RE

r1.r2 is a RE



2. Closure laws –



(r*)* = r*, closing an expression that is already closed does not change the language.

∅* = ∈, a string formed by concatenating any number of copies of an empty string is empty itself.

r+ =  r.r* = r*r, as r* = ∈ + r + rr+ rrr …. and r.r* = r+ rr + rrr ……

r* = r*+ ∈







3. Associativity –

If r1, r2, r3 are RE, then 



i.) r1+ (r2+r3) = (r1+r2) +r3 

For example : r1 = a , r2 = b , r3 = c, then


b a b

E

a a

a E a aa aaa 0 0 2,3

at a aa aaa 1 2,3

a b string using a b If
b a b a b arb

strings oflength3

disdain

Ebl



The resultant regular expression in LHS becomes a+(b+ c) and the regular set for the corresponding 
RE is {a, b, c}.

for the RE in RHS becomes (a+ b) + c and the regular set for this RE is {a, b, c}, which is same in both 
cases. Therefore, the associativity property holds for union operator.



ii.) r1.(r2.r3)  = (r1.r2).r3

For example – r1 = a , r2 = b , r3 = c

Then the string accepted by RE a.(b.c) is only abc.

The string accepted by RE in RHS is (a.b).c is only abc ,which is  same in both cases. Therefore, the 
associativity property holds for concatenation operator.

Associativity property does not hold for Kleene closure(*) because it is unary operator.



4. Identity –

In the case of union operators

if r+ x = r  ⇒ x= ∅ as r ∪ ∅= r, therefore ∅ is the identity for +.

Therefore, ∅ is the identity element for a union operator.



In the case of  concatenation operator –

if r.x = r , for x= ∈

r.∈ = r  ⇒ ∈ is the identity element for concatenation operator(.) . 



5. Annihilator –

If r+ x = x  ⇒  r ∪ x= x , there is no annihilator for +

In the case of a concatenation operator, r.x = x, when x = ∅, then r.∅ = ∅, therefore ∅ is the 
annihilator for the (.)operator. For example {a, aa, ab}.{ } = { }



6. Commutative property –

If r1, r2 are RE, then 



r1+r2 = r2+r1. For example, for r1 =a and r2 =b, then RE a+ b and b+ a are equal.

r1.r2 ≠ r2.r1. For example, for r1 = a and r2 = b, then  RE a.b is not equal to b.a.



7. Distributed property –

If r1, r2, r3 are regular expressions, then 



(r1+r2).r3 = r1.r3 + r2.r3  i.e. Right distribution

r1.(r2+ r3) = r1.r2 + r1.r3  i.e. left distribution

(r1.r2) +r3  ≠ (r1+r3)(r2+r3)



8. Idempotent law –

r1 + r1 = r1  ⇒  r1 ∪ r1 = r1 , therefore the union operator satisfies idempotent property.

r.r ≠  r ⇒ concatenation operator does not satisfy idempotent property.



9. Identities for regular expression –

There are many identities for the regular expression. Let p, q and r are regular expressions.



∅ + r = r

∅.r= r.∅ = ∅

∈.r = r.∈ =r


a



∈* = ∈ and ∅* = ∈

r + r = r

r*.r* = r*

r.r* = r*.r = r+.

(r*)*  =  r*

∈ +r.r* = r* = ∈ + r.r*

(p.q)*.p = p.(q.p)*

(p + q)* = (p*.q*)* = (p* + q*)*

(p+ q).r= p.r+ q.r and r.(p+q) = r.p + r.q



Reference Link : https://www.geeksforgeeks.org/properties-of-regular-expressions/
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Q length atmost 2
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on dividing the string length by 3 remainder
will be 2

b no

Ctb 6 b Carb aeb atb

Q Strings start with a

a a b
aba a

ana

aaab 1 CI E 1atfb aaebQ Ends with a

b a

Q containing a

G b a a b

Q Start End with different symbol Σ a b

a b or b a

a atb b b atb a

a a b b b atb a

Q start and End with same symbol

a a b a b a b b atb

a b aa aba aaa












































































































Acceptor
CONVERSION of REGORTETIEXPRESSION TO

FINTTEAUTOMATODonitacc.pt
anything

a 0300
arb 0

a b

a
a

a aa aaa

ab 0
b a b

0
b

aab abb abbb

b

E ab abab abalsals

Lab ba 70E ab.ba abba baab Lb
2

t 6
abba












































































































CONVERSION OF FINITE AUTOMATA TO REGULAR EXPRESSION

STATE EUMINATION METHOD

L tastacshouldnot have any incoming edge

newstate

2 Final State Should not have any outgoing edge

0 00 0

0 0 0

3 One final state

0 0 00
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Kleene's theorem is used to show the equivalence between regular languages, regular expressions, 
and finite automata. Kleene's theorem states that:



For any regular expression of a language, there exists a finite automaton.



In simple words, a regular expression can be used to represent a finite automaton and vice versa.
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Testing whether a language is regular or not
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