

Regular Expression

TRpresentation

Regular
Language

Acceptor
Generfor

v
finite Antoneta

Regular Grammar

mtototw.top
Leftrig 114 matterLinear ftp.ammorGrammar DFA NFA G NA

Regular Expression

Regular Expression are the representation of languageswhich are accepted by FA
3operators

i union atb
either a orb

it concatenation a b a b

iii Kleene closure

a Primitive RE

I E E input alphabet

b Rs Mz are RE

artery Mi ra r are RE

C can apply and as manyt want

Algebraic properties of regular expressions:

Kleene closure is an unary operator and Union(+) and concatenation operator(.) are binary operators.

1. Closure:

If r1 and r2 are regular expressions(RE), then

r1* is a RE

r1+r2 is a RE

r1.r2 is a RE

2. Closure laws –

(r*)* = r*, closing an expression that is already closed does not change the language.

∅* = ∈, a string formed by concatenating any number of copies of an empty string is empty itself.

r+ = r.r* = r*r, as r* = ∈ + r + rr+ rrr …. and r.r* = r+ rr + rrr ……

r* = r*+ ∈

3. Associativity –

If r1, r2, r3 are RE, then

i.) r1+ (r2+r3) = (r1+r2) +r3

For example : r1 = a , r2 = b , r3 = c, then

b a b

E

a a

a E a aa aaa 0 0 2,3

at a aa aaa 1 2,3

a b string using a b If
b a b a b arb

strings oflength3

disdain

Ebl

The resultant regular expression in LHS becomes a+(b+ c) and the regular set for the corresponding
RE is {a, b, c}.

for the RE in RHS becomes (a+ b) + c and the regular set for this RE is {a, b, c}, which is same in both
cases. Therefore, the associativity property holds for union operator.

ii.) r1.(r2.r3) = (r1.r2).r3

For example – r1 = a , r2 = b , r3 = c

Then the string accepted by RE a.(b.c) is only abc.

The string accepted by RE in RHS is (a.b).c is only abc ,which is same in both cases. Therefore, the
associativity property holds for concatenation operator.

Associativity property does not hold for Kleene closure(*) because it is unary operator.

4. Identity –

In the case of union operators

if r+ x = r ⇒ x= ∅ as r ∪ ∅= r, therefore ∅ is the identity for +.

Therefore, ∅ is the identity element for a union operator.

In the case of concatenation operator –

if r.x = r , for x= ∈

r.∈ = r ⇒ ∈ is the identity element for concatenation operator(.) .

5. Annihilator –

If r+ x = x ⇒ r ∪ x= x , there is no annihilator for +

In the case of a concatenation operator, r.x = x, when x = ∅, then r.∅ = ∅, therefore ∅ is the
annihilator for the (.)operator. For example {a, aa, ab}.{ } = { }

6. Commutative property –

If r1, r2 are RE, then

r1+r2 = r2+r1. For example, for r1 =a and r2 =b, then RE a+ b and b+ a are equal.

r1.r2 ≠ r2.r1. For example, for r1 = a and r2 = b, then RE a.b is not equal to b.a.

7. Distributed property –

If r1, r2, r3 are regular expressions, then

(r1+r2).r3 = r1.r3 + r2.r3 i.e. Right distribution

r1.(r2+ r3) = r1.r2 + r1.r3 i.e. left distribution

(r1.r2) +r3 ≠ (r1+r3)(r2+r3)

8. Idempotent law –

r1 + r1 = r1 ⇒ r1 ∪ r1 = r1 , therefore the union operator satisfies idempotent property.

r.r ≠ r ⇒ concatenation operator does not satisfy idempotent property.

9. Identities for regular expression –

There are many identities for the regular expression. Let p, q and r are regular expressions.

∅ + r = r

∅.r= r.∅ = ∅

∈.r = r.∈ =r

a

∈* = ∈ and ∅* = ∈

r + r = r

r*.r* = r*

r.r* = r*.r = r+.

(r*)* = r*

∈ +r.r* = r* = ∈ + r.r*

(p.q)*.p = p.(q.p)*

(p + q)* = (p*.q*)* = (p* + q*)*

(p+ q).r= p.r+ q.r and r.(p+q) = r.p + r.q

Reference Link : https://www.geeksforgeeks.org/properties-of-regular-expressions/

Q Ʃ a b
RE for strings of length exactly 2

L Eaa ab ba bb finite apply union b wall these strings
a

c c B
a.at jE ncoss

Q length exactly 3

b atb atb

Q length atleast 2 Ʃ a b

aa ab ba bb aaa aab

repletedby2 length S
3 length5

f a

exactly2 length

Q length atmost 2

length I length 2 length
E a b aa ab ba bb

Iway eeatbta.at abt bat bb

2way a D

fats
a b a b

Q Even length string Ʃ a b

Ʃ aa ab ba bb aaaa

2 4 08 Iiiii
3 619

b atb Repeat pair of 2 s

a b a b

b atb atb atb

Q odd length string
length 1 3,5 7,9

b atb and
f.ch
fmdf

Q String whose length is 2 mod 3

on dividing the string length by 3 remainder
will be 2

b no

Ctb 6 b Carb aeb atb

Q Strings start with a

a a b
aba a

ana

aaab 1 CI E 1atfb aaebQ Ends with a

b a

Q containing a

G b a a b

Q Start End with different symbol Ʃ a b

a b or b a

a atb b b atb a

a a b b b atb a

Q start and End with same symbol

a a b a b a b b atb

a b aa aba aaa

Acceptor
CONVERSION of REGORTETIEXPRESSION TO

FINTTEAUTOMATODonitacc.pt
anything

a 0300
arb 0

a b

a
a

a aa aaa

ab 0
b a b

0
b

aab abb abbb

b

E ab abab abalsals

Lab ba 70E ab.ba abba baab Lb
2

t 6
abba

CONVERSION OF FINITE AUTOMATA TO REGULAR EXPRESSION

STATE EUMINATION METHOD

L tastacshouldnot have any incoming edge

newstate

2 Final State Should not have any outgoing edge

0 00 0

0 0 0

3 One final state

0 0 00

0 0 8 0

4 Eliminate all states except im f.ee

Eg OFF
0
RE atb c

Eg b

IS
RE a b

Eg

RE abdc

Eg

E

RE 0 107

Gg

a

a

a nH

Ictds

RE a b Ctd

G
aB

if
b

9dg

Eg t B

tf

67
a

Etsy
RE Ca d beta

Eg If
www 7

de

e

le

d
RE 1517

Eg 7151 3 0

e
20 10 20E

Kleene's theorem is used to show the equivalence between regular languages, regular expressions,
and finite automata. Kleene's theorem states that:

For any regular expression of a language, there exists a finite automaton.

In simple words, a regular expression can be used to represent a finite automaton and vice versa.

0 10 10 1

10 A
E 210

10 1
E

Kfe

RE 0 10 102

EE cavalent Power

Homework ARDENS THEOREM find RE of FA

Regular expression
weekend

RegulartthÉgÉ
É

Generator

Jacceptor
Regular Grammar finite Automata

Testing whether a language is regular or not

L Regular

Language is finite Regular

Language is infinite u are able to give a FA or
RE then it will be regular
language

Eg an n s at

L a aa aaa

FA
a

Regular

RE at a.at

Eg anbm In m s

ab abb aab

FA Of Regular

RE a atb.be

Eg anb

ME
fine

n is bounded Regular

Eg a b n e Not Regular

infinite language

ab aabb.aedgb aaaabbbb

aa bb
abbb aaab

FA through you can't keep track of cont

Eg WIN 101 2 E IS

EE

y
RE aaaa abbatbaab bbbb

Not RegularEg ww wIEfwo.net one's

Eg WW wt a b Not Regular

of

Eg a bmc him k 1 Regular

it feb 08
RE aa bb c

Eg a b i j s Regular

FA 0 9 ai
68

I
08 0 0

RE aa b bb

Gt a b 8 i j 1

RE ad bbb bbb
Regular

a b 8 i.jo

RE a bbb

a n is even Regular

a a a as

6 a ad a
create acycle 7

29 s

FA 00780
Eg a n is odd Regular

a a at at 99 cycle of 20 s

FA 0 0 0

Egs a n is prime not Regular

a a as at a a a 7

no common difference
2

Cannot have a FA

